A rigidity result for metric measure spaces with Euclidean heat kernel
نویسندگان
چکیده
We prove that a metric measure space equipped with Dirichlet form admitting an Euclidean heat kernel is necessarily isometric to the space. This helps us providing alternative proof of Colding’s celebrated almost rigidity volume theorem via quantitative version our main result. also discuss case spherical kernel.
منابع مشابه
Best Proximity Point Result for New Type of Contractions in Metric Spaces with a Graph
In this paper, we introduce a new type of graph contraction using a special class of functions and give a best proximity point theorem for this contraction in complete metric spaces endowed with a graph under two different conditions. We then support our main theorem by a non-trivial example and give some consequences of best proximity point of it for usual graphs.
متن کاملOn Heat Kernel Estimates and Parabolic Harnack Inequality for Jump Processes on Metric Measure Spaces
In this paper, we discuss necessary and sufficient conditions on jumping kernels for a class of jump-type Markov processes on metric measure spaces to have scale-invariant finite range parabolic Harnack inequality.
متن کاملStability of heat kernel estimates for symmetric jump processes on metric measure spaces
In this paper, we consider symmetric jump processes of mixed-type on metric measure spaces under general volume doubling condition, and establish stability of two-sided heat kernel estimates and heat kernel upper bounds. We obtain their stable equivalent characterizations in terms of the jumping kernels, modifications of cut-off Sobolev inequalities, and the Faber-Krahn inequalities. In particu...
متن کاملNotes on Heat Kernel Estimates and Parabolic Harnack Inequality for Jump Processes on Metric Measure Spaces
In this paper, we discuss necessary and sufficient conditions on jumping kernels for a class of jump-type Markov processes on metric measure spaces to have scale-invariant finite range parabolic Harnack inequality. AMS 2000 Mathematics Subject Classification: Primary 60J75 , 60J35, Secondary 31C25 , 31C05. Running title: Notes on Heat Kernel Estimates and Parabolic Harnack Inequality
متن کاملQuasi-metric Spaces with Measure
The phenomenon of concentration of measure on high dimensional structures is usually stated in terms of a metric space with a Borel measure, also called an mm-space. We extend some of the mm-space concepts to the setting of a quasi-metric space with probability measure (pq-space). Our motivation comes from biological sequence comparison: we show that many common similarity measures on biologica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de l'E?cole polytechnique
سال: 2021
ISSN: ['2429-7100', '2270-518X']
DOI: https://doi.org/10.5802/jep.179